RASC: Retrieval-Augmentation with Synthetic Corrective Reasoning

Laurentiu Meirosu
Syntelesis Al Lab
laurentiu@syntelesis.ai

Abstract

Retrieval-Augmented Generation (RAG) ex-
tends large language models to specialised cor-
pora, but it remains vulnerable to hallucina-
tion answers that seamlessly confabulate true
evidence with unsupported claims triggered
by irrelevant context [Huang et al., 2024b].
We introduce RASC (Retrieval-Augmentation
with Synthetic Corrective reasoning), a super-
vised fine-tuning method that converts hallu-
cination into training signal. For every ques-
tion—answer pair in domain-specific datasets
like PubMedQA and BioASQ, RASC synthe-
sises (i) distractor passages, (ii) generates hal-
lucination answers based on formal fallacy
classes, and (iii) constructs chain-of-thought
rationales that diagnose and correct the error
using only verifiable evidence. Training on
these “wrong then right” demonstrations con-
ditions the model to locate golden passages,
ignore distractors, and articulate faithful rea-
soning. Evaluated with RAGAS (faithfulness,
answer relevance) and ROUGE, the RASC
fine-tuned model, with only 1,000 generated
samples, more than doubles grounding quality
over a standard RAG baseline and surpasses
conventional supervised fine-tuning across all
datasets. These results present corrective chain-
of-thought supervision as a lightweight yet ef-
fective method to significantly reduce domain-
specific hallucinations in RAG systems.

1 Introduction

Large-scale language models (LLMs) have
demonstrated impressive general knowledge and
emergent reasoning abilities, enabling strong
performance on tasks ranging from open-domain
question answering to code generation. Their
general coverage, acquired through pre-training on
large corpora, has made them indispensable tools
across multiple industries. Yet, when these models
are deployed in domain-specific settings such
as biomedicine, finance or law their seemingly
universal competence often degrades sharply. The
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Figure 1: Overview of our Supervised fine-tuning
method with Synthetic Hallucinations and Correc-
tions: Using a higher model we generate the hallucina-
tions and corrections for the relevant Question, Context
and Answer pairs. Then we use instruction fine-tuning
(IFT) on the lower model with reasoning steps on how to
write the correction of the fallacies itself before answer-
ing the question. The result is a model that has learned
to account for corrections via few-shot demonstrations
and Chain-of-Thought (CoT) reasoning.

deterioration is most visible when the model must
answer questions whose solutions lie outside
its pre-training distribution and inside a narrow,
specialised set of documents.

Retrieval-Augmented Generation (RAG) has
emerged as the de-facto strategy for bridging
this gap [Lewis et al., 2020, Gao et al., 2024].
By retrieving relevant passages from an external
corpus and concatenating them to the prompt
as context, RAG enables an LLM to ground
its generations in up-to-date, domain-specific
evidence without retraining the entire model. In
principle, this architecture should yield faithful
and context-aware responses.  However, in
practice, RAG pipelines often suffer from a
severe misalignment between the retrieved context
and the final answer to the model, resulting in
factual errors or hallucinations [Li et al., 2024].
These hallucinations manifest when the model
(i) overlooks pertinent evidence, (ii) fabricates
statements that are unsupported by any retrieved
passage, or (iii) conflates distractor documents



with genuinely relevant ones.

Hallucinations linger in RAG systems for
three reasons: (1) Retriever noise dense retrievers
[Karpukhin et al., 2020] still surface topically
similar but non-answer chunks due to coarse
boundaries and embedding collisions [Morris
et al., 2023]; (2) Ungrounded training—pretraining
treats all tokens alike, so models learn facts
without learning to link claims to specific passages;
without grounding-aware fine-tuning, they cannot
reliably ignore distractors; (3) Weak incentives
rarely rewards correct citation or penalises
misuse of context, letting the model favour
high-probability continuations over evidence
fidelity.  Thus, noisy retrieval, unsupported
knowledge, and absent contrastive rewards com-
bine to produce confident yet unsupported answers.

In this work, we hypothesise that Instruc-
tion Fine-Tuning (IFT) [Ouyang et al., 2022]
can allow a large language model to recognise
and avoid hallucinations by making it learn how
to create and correct fallacies during training.
To evaluate this claim, we introduce the RASC
method (Retrieval-Augmented with Synthetic
Corrections). This method teaches the model to
generate an incorrect context-relevant response and
then goes through an explicit reasoning to identify
the error and produce the correct response. Unlike
approaches that suppress generative freedom, this
hypothesis asserts that exposing the model to its
hallucinations and teaching it to correct them will
train its representations to downweight distractors
and better align the response to the given context.

2 Prior Literature

Retrieval-augmented generation (RAG) promises
factual grounding yet still fails when large
language models (LLMs) treat stray context
as evidence. Shi et al. [2023] show this fail-
ure mode systematically in “Large Language
Models Can Be Easily Distracted by Irrelevant
Context”. When a single, semantically plausible
but answer-irrelevant sentence is inserted into
GSMBS8K problems, accuracy collapses by up to
30 points and fewer than 18% of base questions
are answered consistently across distractor
variations. Their micro/macro analysis pinpoints
two root causes we address in RASC: (i) retrievers
surface distractors; (ii) the generator lacks an in-

ternal mechanism for separating “gold” from noise.

A second line of work tries to detect when
the model simply does not know. “Don’t Hallu-
cinate, Abstain” [Feng et al., 2024] ensembles
multiple LLMs, measuring answer disagreement as
a proxy for knowledge gaps. While collaboration
reduces blatant fabrications, it does not teach any
single model why a candidate span is ungrounded.
Related work on calibration [Kadavath et al., 2022]
explores whether models can accurately assess
their own uncertainty, but this does not directly
address context-grounding failures.

In very low-resource settings, ‘“Embedding
Hallucination for Few-shot Language Fine-tuning”
[Jian et al., 2022] shows that injecting short, noisy
continuations during fine-tuning encourages the
model to allocate separate sub-spaces to “real”
and “fake” examples, improving robustness on
GLUE [Wang et al., 2019]. RASC generalises
this idea to the RAG setting: we synthesise
context-conditioned hallucinations that mirror the
ten formal-fallacy profiles most often observed
in RAG output and couple them with guided
correction. Experiments confirm that conditioning
on the same retrieval pipeline is crucial. The gains
reported for embedding hallucination alone vanish
when distractors are semantically on-topic.

Recent evidence suggests that training on
noisy retrieval results is as critical as evaluating
on them. Zhang et al. [2024] introduce “RAFT:
Retrieval-Augmented Fine-Tuning”, showing that
explicitly mixing golden and distractor documents
during supervision sharpens a model’s ability to
disregard irrelevant context at test time. Their
ablations reveal two findings highly pertinent
to RASC: (i) a 4:1 ratio of distractors to gold
passages at training maximises downstream RAG
robustness, and (ii) omitting the gold passage
in a controlled fraction of examples forces the
model to memorise core facts when retrieval
misses, further reducing hallucinations. RAFT
therefore complements the diagnostic study of
Shi et al. [2023]: while Shi quantifies how badly
models fail in the presence of a single misleading
sentence, RAFT demonstrates that exposing the
model to such noise—paired with chain-of-thought
rationales that highlight the correct evidence leads
to sizeable gains on PubMedQA, HotPotQA [Yang



et al., 2018], and Gorilla APIBench. RASC adopts
this principle by fusing distractor rich contexts
with labelled fallacy/correction pairs, extending
RAFT’s document-level noise curriculum to a
finer-grained taxonomy of ten formal fallacies.

Finally, “Can Rationalization Improve Ro-
bustness?’ [Chen et al., 2022] tests whether
training models to output free-text rationales
shields them from adversarial noise. Gold ratio-
nales improve human alignment but paradoxically
decrease robustness: models latch onto the
rationale template itself instead of grounding in
supporting facts. This finding aligns with concerns
about unfaithful chain-of-thought reasoning
[Turpin et al., 2023, Lanham et al., 2023], where
models may generate plausible-sounding but
disconnected explanations. RASC departs in two
ways: (i) rationales are generated after a hallucina-
tion is induced, ensuring they explicitly negate a
known error, and (ii) rationales are evaluated with
RAGAS-Faithfulness so only evidence-grounded
traces survive curriculum filtering. Recent work on
improving CoT faithfulness [Paul et al., 2024, Lyu
et al., 2023] provides additional motivation for our
correction-based approach.

3 Method

We now formalise the RASC training objective, de-
scribing how corrective examples provide gradient
signal that teaches the model to distinguish gold
evidence from distractors. We begin by establish-
ing notation, then contrast the standard supervised
fine-tuning loss with the RASC combined loss, and
finally explain why conditioning corrections on hal-
lucinations yields more robust learning.

3.1 Notation

Throughout this paper, we denote a question as ¢,
the gold passage containing the correct evidence
as ¢y, and the set of £ = 3 distractor passages
as D = {d1,ds,ds}. The ground-truth answer is
written a*.

A key component of RASC is the noisy context
¢ = shuffle(cg, d1,d2,ds), which interleaves
the gold passage with distractors in random
order. This simulates the realistic retrieval setting
where relevant and irrelevant chunks appear
together without clear demarcation. We also
introduce Gy, to denote a synthetically generated

hallucinated answer, and r to denote the corrective
chain-of-thought rationale that identifies and
fixes the hallucination. The use of hard negative
examples during training draws on principles
from contrastive learning [Robinson et al., 2021,
Chuang et al., 2020].

3.2 Standard SFT Loss

Standard supervised fine-tuning optimises on clean
question-context-answer triples, minimising the
negative log-likelihood of the correct answer given
only the gold passage:

Lspr = —logpe(a™ | q,c¢q) (D

This formulation assumes that all provided context
is relevant—an assumption that breaks down in real
RAG deployments where retrievers inevitably sur-
face some off-topic material. Because the model
never encounters distractors during training, it can-
not learn to discriminate gold from noise, leaving
it vulnerable to hallucination when irrelevant pas-
sages appear at inference time.

3.3 RASC Loss

RASC addresses this limitation by fine-tuning on
a combined objective that incorporates both noisy
context and explicit correction supervision. The
total loss comprises two terms:

ERASC = »Cans +A ['corr (2)

where A controls the relative weight of the correc-
tion term. The answer loss trains the model to
produce correct responses despite the presence of
distractors:

Lons = — 10gp9(a* ‘ q, 6) 3)

The correction loss trains the model to generate a
rationale that diagnoses errors in the hallucinated
answer:

Leow = — logpg(T ‘ q, ¢, &h) 4)

Two key differences separate RASC from standard
SFT. First, the use of noisy context ¢ forces the
model to extract correct answers even when distrac-
tors are present, rather than assuming all context is
trustworthy. Second, the correction loss conditions
on the hallucinated answer a;, before generating
the rationale r, teaching the model to diagnose spe-
cific errors rather than merely producing generic
explanations.



3.4 Why Corrections Help

The correction loss provides gradient signal that
standard answer-only training cannot deliver.
When the model learns to predict rationale tokens
such as “The second paragraph is irrelevant
because it discusses a different study...”, gradients
flow back through the attention mechanism
[Vaswani et al., 2017] and reduce the weights
assigned to distractor positions.

Intuitively, to predict why something is wrong,
the model must first learn what to ignore. This
creates an implicit curriculum [Bengio et al.,
2009]: the model cannot minimise L., Without
developing internal representations that distinguish
gold evidence from noise. Standard SFT, by
contrast, never forces this discrimination because
the training context contains only relevant material.
Recent surveys on self-correction in LLMs [Kamoi
et al., 2024, Huang et al., 2024a] suggest that while
intrinsic self-correction without external feedback
often fails, training-time correction with explicit
supervision—as in RASC—can be effective.

3.5 Training Data Generation

For each gold triple (¢, ¢4, a*) in our datasets, we
use GPT-4o to generate the additional components
needed for RASC training. First, we generate
three distractor passages D that are topically
related to the question but do not contain the
answer. These simulate the retriever noise that
occurs in real deployments. Second, we generate
a hallucinated answer ay, that exemplifies one of
ten catalogued fallacy types, such as fabricating
unsupported claims or misattributing evidence
from distractors. Third, we generate a corrective
rationale r that identifies the specific error in ay,
and reasons step-by-step toward the correct answer
a*. This approach to synthetic data generation for
fine-tuning builds on recent work demonstrating
the effectiveness of LLM-generated training data
[Wang et al., 2023].

The resulting training instances thus contain
the full “wrong then right” demonstration: the
model sees the question, the noisy context mixing
gold and distractors, an example of what a
hallucinated response looks like, and a detailed
correction that models faithful reasoning.

4 Data

To evaluate the faithfulness of our fine-tuning
method, we curate two domain-specific and one
general-domain publicly available datasets.

4.1 Domain-Specific Benchmarks

PubMedQA [Jin et al., 2019] provides expert-
annotated questions whose answers must be
inferred from PubMed abstracts. Because each
abstract contains highly technical findings, halluci-
nations surface whenever a model reads tangential
sentences as evidence. PubMedQA therefore
serves as our primary test bed for fact-grounding
under narrow scientific discourse.

BioASQ [Krithara et al., 2023] extends this
setting with thousands of “exact” and “summary”’
questions paired with gold PubMed snippets.
The larger scale enables reliable measurement of
false attribution rates and the impact of distractor
passages injected by the retriever. Recent BioASQ
challenges [Nentidis et al., 2024] have seen increas-
ing use of RAG-based approaches, underscoring
the relevance of our evaluation setting.

4.2 General-Domain Readability and
Context-Use

SQuAD vl [Rajpurkar et al., 2016] contains crowd-
sourced QA pairs over Wikipedia paragraphs. Un-
like the biomedical sets, SQuUAD passages are writ-
ten for a lay audience, allowing us to measure (i)
whether corrective Chain-of-Thought harms flu-
ency, and (ii) how precisely the model anchors
answers to the immediate span that contains the
ground truth.

5 Model

5.1 Baselines

We evaluate two reference systems on the identical
LLaMA-2 7B backbone, each fed with a concate-
nated string (question, context). B-Zero is the un-
touched Meta checkpoint, showing how a general-
purpose model performs when given a context. B-
SFT represents the mainstream recipe for super-
vised RAG: the model is fine-tuned on (g, ¢4, a*)
with Lspr.

5.2 Proposed Model: RASC

RASC adds synthetic hallucinations with
correction-rich chain-of-thought reasoning (see
Figure 2). For every gold instance in PubMedQA,



Hallucination guidance

Fallacies + Corrections:

® . -
“Fallacy-type™: *...".

“Wrong-answer
SR “Correctiol )

“Guidance”: "..."
Fallacies List (.

Distractor Oracle Distractor
Chunk Chunk Chunk

{ Question, Answer }

Figure 2: Overview of our Synthetic Data Generation
pipeline: First, the context is composed from a combi-
nation of the context and distractor chunks. Second, a
list of relevant fallacies is composed for the model to
hallucinate and correct against. Third, the instruction is
given on how to construct the wrong answer, correction,
and the guidance. The result is a list of hallucinations
and corrections demonstrations tailored for each ques-
tion, context, and answer pair.

[INST] <<SYS>>

You are a precise, factual assistant that answers the question directly using only the
infarmation stated in the context. Before answering, you must detect and correct
fallacies in your response. Write your response under the section '### Response’.
<</5Y5==

Analysis of pharmaceutical safety-related regulatory actions in Japan: do tradeoffs
exist between safer drugs and launch delay?[/INST]

##¥ Context:

Prediction and management of drug safety is a global regulatory issve. Safety-related
regulatory actions (SRRAs) are taken mostly when unexpected adverse drug reactions
occur. Currently, Japan is reconciled to delayed access to new drugs (ie, launch delay
compared to Western countries), but may have been benefiting by free-riding on safety
data accumulated in other countries prior to Japanese launch. To identify factors that
are significantly associated with SRRAs, and to [...]

### Fallacy Correction Guidance:

Fallacy 1 (Factual Fabrication):

Question: Analysis of pharmaceutical safety-related regulatory actions in Japan: do
tradeoffs exist between safer drugs and launch delay?

Wrong Response: Japan's SRRAs are based solely on clinical trial data.

Problem: The context states that SRRAs are associated with postmarketing evidence,
not just clinical trial data.

Correction: Refer to the actual sources of data associated with SRRAs, such as
postmarketing evidence.

Figure 3: RASC prompt that guides the model on
how to correct fallacies via Chain-of-Thought (CoT).
The detailed Fallacies Correction Guide includes the
original Question, example of the Wrong Response, the
explanation of the Problem and the Correction needed
based on the given Question and Context.

BioASQ, and SQuAD, we sample three distractor
passages and prompt GPT-40, conditioned on ten
catalogued fallacy tags, to produce:

* hallucinated answers that exemplify the fal-
lacy, and

* a step-by-step corrective rationale that points
out each error and provides guidance for the
correction

The resulting training instances, each containing
the question, noisy context, hallucinated answer,
and correction, are combined with the gold answer.
Fine-tuning minimises the combined RASC objec-
tive: cross-entropy on the correct answer tokens
and teacher-forced loss over the corrective chain-
of-thought.

5.3 Training and Inference Protocol

Fine-tuning is performed on a subset of the datasets
(1,000 data points) with QLoRA [Dettmers et al.,
2023]: 4-bit quantisation for the frozen base
weights and rank-16 LoRA [Hu et al., 2022]
adapters for trainable updates. Optimisation uses
AdamW [Loshchilov and Hutter, 2019] with a
learning rate of 2 x 10~° on mini-batches of 128
sequence pairs. We set A = (0.5 to balance the an-
swer and correction loss terms. We use a standard
80/20 train/test split for evaluation.

6 Experimental Design

To isolate how corrective Chain-of-Thought (CoT)
fine-tuning affects Retrieval-Augmented Genera-
tion, we organise evaluation on the subset of Pub-
MedQA, BioASQ and SQuAD questions for which
the raw checkpoint (B-Zero) scored < 0.40 on the
RAGAS-Faithfulness metric. This threshold is cho-
sen because a score below 0.40 indicates that fewer
than half of the claims in the generated answer
are supported by the retrieved context, representing
cases where the model demonstrably struggles with
grounding and is prone to hallucination.

6.1 Synthetic Corrections Supervised
Fine-tuning

We fine-tune LLaMA-2 7B with the RASC syn-
thetic corrections but add no specific prompt en-
gineering at inference. The model sees training
instances containing question, noisy context, hal-
lucinated answer, and correction during training,
learns to downweight distractors, and is evaluated
with the same retrieval bundle as B-Zero. This
quantifies the standalone benefit of fallacy-aware
CoT supervision.

6.2 Evaluation Protocol

We assess every model on the subset—questions
where the raw LLaMA-2 7B scored < 0.40 on
RAGAS—using two complementary families of
metrics.

RAGAS Faithfulness.  For each predicted
answer we concatenate it with the retrieved
passages and submit the pair to the GPT-4 model
supplied by the RAGAS toolkit [Es et al., 2024].
The verifier decomposes the answer into single
claims, checks each claim for textual entailment
[Bowman et al., 2015] against the evidence, and
returns a continuous score in [0, 1]: 1.0 when all



claims are supported, 0.0 when none are. Because
the computation is claim-level and context-aware,
the metric is sensitive to hallucinations, yet
agnostic to surface paraphrase, making it the
primary measure for grounding quality. This
approach aligns with recent work on fine-grained
factuality evaluation [Min et al., 2023].

ROUGE-1 / ROUGE-L F1. These reference-
based measures quantify the lexical fidelity to the
gold answer. ROUGE-1 counts unigram overlap,
capturing content words regardless of order,
while ROUGE-L computes the longest-common-
subsequence ratio, rewarding correct phrases and
fluency. Both are reported as F-scores. Although
ROUGE cannot detect hallucinations in supporting
sentences, it remains the de-facto indicator
of answer adequacy and is complementary to
RAGAS.

All models are evaluated with the same question,
context pairs and identical decoding settings. Any
differences in RAGAS or ROUGE therefore stem
solely from the fine-tuning data, ensuring a clean
attribution of gains.

7 Results

Across the full evaluation suite (PubMedQA,
BioASQ, and SQuAD datasets) RASC is the only
model that clears the two-fold bar of (i) lexical
fidelity (ROUGE-1/-L) and (ii) grounding qual-
ity (all RAGAS metrics). Averaged over datasets,
RASC lifts the Faithfulness score from 0.233 (B-
Zero) and 0.188 (B-SFT) to 0.395 (see Table 1).
ROUGE follows the same pattern but on lower
absolute values, climbing from 0.196 to 0.219 F-
points, indicating that better grounding does not
come at the expense of surface accuracy (see Tables
2 and 3).

Model | PubMedQA BioASQ SQuAD
B-Zero 0.233 0.228 0.189
B-SFT 0.188 0.217 0.221
RASC 0.395 0.311 0.446

Table 1: RAGAS Faithfulness Score. RASC improves
faithfulness significantly in all domain-specific datasets.
Across PubMedQA, BioASQ and SQuAD, we find that
RASC fine-tuning with correction guidance demonstra-
tions improves how factually consistent the response
is with the given context. We compare our model with
LLaMA-2 7B fine-tuned on the same datasets.

Model | PubMedQA BioASQ SQuAD
B-Zero 0.196 0.186 0.106
B-SFT 0.176 0.238 0.136
RASC 0.219 0.206 0.224

Table 2: ROUGE-L F1 Score. RASC improves sig-
nificantly on structural hallucinations (distortions on
relationships, context, or logical flow) on the SQuAD
dataset, and only slightly on the more complex answer
requirements. In our experiment, this shows the lim-
itations of the ROUGE metric in measuring complex
hallucinations.

Model | PubMedQA BioASQ SQuAD
B-Zero 0.279 0.189 0.139
B-SFT 0.239 0.271 0.341
RASC 0.356 0.286 0.500

Table 3: ROUGE-1 Precision Score. RASC improves
significantly on additive hallucinations (missing words
from the context) where this metric can properly assess
this value. For example, RASC scores high on SQuAD
dataset where answers are shorter and do not rely on
inference, while BioASQ relies on lengthier answers
with a high degree of inference from the context.

8 Analysis

The raw B-Zero model fails on two fronts: it
copies distractor facts into its narrative and it
phrases answers in a style that mismatches the
dataset annotations, yielding both low Faithfulness
and modest ROUGE. B-SFT standard supervised
fine-tuning on gold triples helps stylistic alignment
[Zhou et al., 2024] but hardly budges grounding:
the model has learned what a plausible answer
looks like yet still cannot tell signal from noise in
the retrieved bundle.

RASC succeeds because the “wrong then
right” training structure forces explicit engagement
with errors. The model cannot minimise Lcor
without learning which context to ignore. This
finding aligns with recent work showing that
self-refinement approaches [Madaan et al., 2023]
can be effective when combined with appropriate
training signals.

These findings demonstrate that merely ex-
posing a model to retrieved context is insufficient
for robust reasoning; explicit adversarial CoT
supervision, as embodied in RASC, is necessary
to teach the model to produce domain-appropriate
answers and to avoid misalignment with the
context.



9 Conclusion

RASC offers a principled method for minimising
hallucinations in RAG. By synthesising repre-
sentative fallacies for each question-context pair
and pairing every flawed answer with an explicit
chain-of-thought correction, the method trains
the model to recognise spurious cues, avoid them,
and reason its way back to evidence-based answers.

Two design choices are central: (i) exposing
the model to a balanced mix of relevant passages
and distractors, and (ii) supervising with side-by-
side hallucination/correction demonstrations that
encode ten recurrent fallacy classes. Experiments
on PubMedQA, BioASQ, and SQuAD confirm
that these choices translate into substantial gains in
RAG settings: increasing faithfulness far beyond
base LLaMA-2 + RAG and standard supervised
fine-tuning, while simultaneously improving
ROUGE.

Taken together, the results underline RASC’s
promise as a lightweight yet effective defence in
reducing domain-specific hallucinations where
faithfulness to the context plays a key role.

Known Project Limitations

Domain over-fitting and generic degradation.
Because RASC fine-tunes on corpora that pair spe-
cialised passages with fallacy-specific corrections,
the model becomes highly sensitised to detecting
and expunging unsupported content. Preliminary
probes on open-domain benchmarks (e.g., Trivi-
aQA [Joshi et al., 2017]) reveal a drop in answer
accuracy and an increased tendency to hedge with
phrases such as “based on the provided context”.
This suggests that the corrective bias learned for
domain material can suppress otherwise valid
inferences when no retrieval context is present.

Stylistic rigidity. RASC’s training signal
tightly couples factual fidelity with a didactic
chain-of-thought style.  While this improves
transparency, it also tends to standardise phrasing;
responses are more formal, and less adaptable to
conversational registers than those produced by
standard RAG systems.

Expanded context footprint. @ Each RASC
training instance contains the question, gold
passage, distractor chunks, a hallucinated answer,

and a corrective rationale. At inference time
the model consequently expects longer prompts
(question + retrieved evidence + self-generated
reasoning), consuming substantially more tokens
than conventional RAG. This issue is particularly
relevant given findings on how models use long
contexts [Liu et al., 2024].
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